STUDY AND IMPLEMENTATION OF NEW COMPUTATIONAL PARADIGMS EXPLOITING NEUROMORPHIC HARDWARE ARCHITECTURES

Evelina Forno

Politecnico di Torino October 16, 2023

Study and implementation of new computational paradigms exploiting neuromorphic hardware architectures

INTRODUCTION

- The rise of embedded devices, the Internet of Things (IoT), and edge computing has transformed the way we interact with technology
- Machine learning (ML) techniques in IoT and edge computing to optimize performance, reduce latency, and improve accuracy
- Deploying ML models directly on the remote endpoint provides advantages
 - Real-time inference for lower latency in time-critical applications
 - Data retention on device increases reliability & privacy
- Artificial Neural Networks (ANNs): a flourishing area of ML
 - Too memory- and power-hungry to run on edge systems
 - End of Moore's law leads to exploration of novel platforms

INTRODUCTION

- Neuromorphic systems: design innovations inspired by neuroscience and biology
 - Computational model: Spiking Neural Network (SNN)
 - Biologically-inspired
 - Sparse internal activity
 - ► Event-driven architecture ⇒ low power consumption
 - Custom routing for effective data interchange
- Neuromorphic systems meet edge computing requirements
 - Low power consumption + localized memory + real-time response

SPIKING NEURAL NETWORKS

- Information in the form of spikes (aka action potentials)
- Computational capabilities comparable to equivalent ANNs while consuming less power
 - A good choice for embedded applications
- Biologically-inspired learning algorithms support online learning
- Well suited for processing temporal information
- Need substantial data transfer between computational and memory units
 - Von Neumann architectures are not suitable
 - ▶ Neuromorphic processors: colocation of memory and computation

THE BUILDING BLOCKS OF A NEUROMORPHIC PIPELINE

This dissertation's goals:

- describe a general approach to the generation of neuromorphic models
- facilitate the modeling process and the exploration of new neuromorphic computational paradigms
- implement data analysis and integration in the industrial field
- Need to examine all elements of the neuromorphic pipeline

THE BUILDING BLOCKS OF A NEUROMORPHIC PIPELINE

- The structure of the thesis follows the flow of data in a neuromorphic pipeline
- Each section an overview of a layer of the pipeline stack
- Main task: classification of time-varying signals

EVENT-DRIVEN AND STANDARD SENSORS

Study and implementation of new computational paradigms exploiting neuromorphic hardware architectures Evelina Forno 7/5

EVENT-DRIVEN AND STANDARD SENSORS

- Input data acquisition from IoT sensors
- Neuromorphic platforms implemented close to the sensors can perform NN-based tasks locally
 - Limit dependency on cloud computing
 - Respect power constraints
 - Maintain data integrity and privacy
 - Event-based encoding significantly reduces the size of sensor data

EVENT-DRIVEN AND STANDARD SENSORS

Standard digital sensors

- Output floating-point or integer samples at each time instant
- Signal needs to be encoded into spikes in order to be processed by a Spiking Neural Network

Event-based sensors

- Output spike trains, remain silent when no input is present
- The spike encoding is performed within the sensor and the input can be fed directly to an SNN

Study and implementation of new computational paradigms exploiting neuromorphic hardware architecture

DIGITAL SENSORS AND DATASETS

Two target datasets:

- Free Spoken Digit (FSD) Dataset (audio signals)
- WISDM Smartphone and Smartwatch Activity and Biometrics Dataset (wearable IMU data)
- Both time-varying signals; distinct regions in the frequency spectrum

DIGITAL SENSORS AND DATASETS

The WISDM dataset

- Smartphone + smartwatch IMU sensors for collecting datasets of human activity
- Signal segmentation affects accuracy and classification time

The FSD dataset

- Crowd-sourced open database of spoken digits (variable quality
- .wav files at 8 kHz
- Word classification challenges
- Optional metadata for speaker identification

Study and implementation of new computational paradigms exploiting neuromorphic hardware architectures

EVENT-BASED TACTILE SENSING

Figure: (A) Diagram of the sensorized fingertip. (B) Experiment configuration with a braille sample. (C) Random distribution for the starting location. Müller-Cleve et al., 2022.

The Braille dataset

- A novel dataset of haptic information based on the braille alphabet, recorded at IIT
- Digital capacitive sensor output encoded as spikes
- Sensorized fingertip (12 capacitive sensors) moving over 3D-printed braille letters (A-Z + space) with a constant sliding distance and velocity
- Starting location with random Gaussian noise

SENSORS: SUMMARY _S

- SNN-based solutions require a sensing input in the form of spikes
- **Event-based sensors**, while promising, are still under active development
- Digital sensors are more accessible because of low cost and market dominance
- Interfacing a neuromorphic computational pipeline with digital inputs requires proper encoding

INPUT ENCODING AND PRE-PROCESSING

Study and implementation of new computational paradigms exploiting neuromorphic hardware architectures Evelina Forno 14 / 57

INPUT ENCODING AND PRE-PROCESSING 📧

Many encoding schemes derived from the animal neuron

- Rate-based coding
- Temporal coding
- We will examine the effects of various spike encoding methods on the performance of a spiking CNN
 - ► Training by transfer learning
 - Classifying time-varying input signals from WISDM and FSD
- **Signal preprocessing** inspired by the human auditory system
 - Frequency decomposition
 - Feature extraction

SIGNAL PRE-PROCESSING **(E)**

Frequency decomposition

	FSD	WISDM
Butterworth	77.50 %	66.67 %
Gammatone	84.00 %	46.67 %

Table: FSD: 32 and 64 channels. WISDM: 4, 8, and 16 channels.

Feature extraction

Figure: Architecture of the convolutional neural network. All figures: Forno et al., 2022.

Study and implementation of new computational paradigms exploiting neuromorphic hardware architecture

ENCODING TECHNIQUES 📧

Figure: Forno et al., 2022.

Accuracy comparison

Figure: Median accuracy values of each encoding class. Forno et al., 2022.

Spike count

- **Deconvolution-based** \rightarrow highest SC
- \quad $\tau_{ref} > 0$ degrades performance

SUMMARY OF ENCODING STRATEGIES (E)

Encoding class and technique		Temporal data		Spatial data ¹	
			Very low F	Middle F	
Rate coding	Poisson Rate		×	1	✓
Temporal Coding	Temporal Contrast	TBR	✓	1	X
		SF	\checkmark	✓	X
		MW	\checkmark	1	X
		ZCSF	\checkmark	1	X
	Deconvolution-based	HSA	_	_	X
		MHSA	_	-	X
		BSA	✓	-	X
	Global Referenced	PHASE	×	1	1
		TTFS	×	1	1
	Latency/ISI	BURST	×	1	1

EVENT-BASED ENCODING OF TACTILE DATA 📧

Sigma-delta modulator

Figure: (A) Sensor reading sequence for a sample letter + sigma-delta modulated spikes. (B) Reconstructed sequences from events compared to the original signal. Müller-Cleve et al., 2022.

Signal reconstruction before time binning

- Higher threshold ⇒ fewer spikes ⇒ worse reconstruction error
- The compression ratio γ grows faster than the reconstruction error ε

Signal reconstruction after time binning

■ Higher threshold ⇒ worse reconstruction error

INPUT ENCODING AND PRE-PROCESSING: SUMMARY (E)

- The frequency bandwidth of the input data has an impact on the quality of the encoding
- The spike count generated by an encoding technique influences the performance of the downstream SNN
 - Lower bound to communication sparsity
- Digital sensors coupled with software encoders can be useful for prototyping different coding techniques and tuning their interactions with other elements

NEURAL MODELS

Study and implementation of new computational paradigms exploiting neuromorphic hardware architectures Evelina Forno 21/5

Leaky Integrate and Fire (LIF)

- Optional refractory period r_{ref}
- Reduces to the (m)ReLU activation function
- Variants such as ALIF add synaptic plasticity

Multi-compartmental neurons

- Model the behavior of dendrites and cell body separately
- Neuroscience simulations
- Urbanczik-Senn model: 2 compartments + 2 synapse types
- Pyramidal model: 3 compartments + 3 synapse types

LEARNING METHODS

Research still in progress for a reliable SNN learning algorithm

- Global methods: Spike-Time-Dependent Plasticity, Back-Propagation Through Time
- Local methods: Hebbian learning, E-prop
- ANN-to-SNN conversion provides an alternative method: Transfer learning
 - Training an ANN, then transfer the resulting weights to an SNN with the same topology
 - Maintain the ANN functionality while lowering power consumption thanks to spike transmission

SPIKING NEURAL NETWORK ARCHITECTURES 📧

Spiking CNN

ANN-to-SNN conversion

Recurrent SNNs

Legendre Memory Unit (LMU)

Comparison of equivalent spiking and nonspiking neural networks for HAR

 Accuracy; number of parameters; energy consumption

Figure: A comparison of convolutional and recurrent SNNs for Human Activity Recognition. Fra et al., 2022.

SPIKING NEURAL NETWORK ARCHITECTURES

- Energy estimated for Intel Movidius (for ANNs) and Intel Loihi (for SNNs)
- SNNs & LMUs use at least one order of magnitude less energy than ANNs
- CNNs and LSTMs are the largest in terms of memory / number of parameters

The Spiking LMU displays the best accuracy/energy/memory trade-off in this examination

MODEL COMPRESSION

- Reduce the size of the network prior to deployment
- Model compression with 2 phases:
 - Synapse reduction: delete connections with smallest weights
 - Fine-tuning: briefly re-train the remaining connections

Spiking CNN trained by transfer learning for FSD and WISDM classification

Figure: Median test accuracy after synapse reduction (A, C) and fine-tuning (B, D) for classification of the FSD and WISDM datasets. Forno et al., 2022.

NEURAL MODELS: SUMMARY 👩

- The dynamics of a network can be modeled down to single neurons
- This flexibility must be tailored to the target application
 - ▶ For most computation purposes, a simple LIF is sufficient
- The choice of the classifier network determines the efficiency and accuracy of the system
 - ANN-to-SNN conversion (i.e. sCNN): ease of implementation and training (transfer learning)
 - Recurrent SNNs (i.e. LMU): correlate time-varying events on a longer scale
- Model choices are informed by available software and hardware

SOFTWARE FRAMEWORKS

Study and implementation of new computational paradigms exploiting neuromorphic hardware architectures Evelina Forno 28 / 57

SOFTWARE FRAMEWORKS P

Neuromorphic applications need a powerful software stack to enable research and development

SNN specification software must handle the simulation complexity of SNNs and ease the difficulties in designing them. Some examples:

PyNN	Nengo	EONS
Python front-end for most	All-in-one simulator based	Evolutionary approach to
neuromorphic simulators	on the Neural Engineering	network design
Widespread adoption by the	NengoDL converter (DNN \rightarrow	neuromorphic hardware
research community	event-based)	platforms

SNN OPTIMIZATION SOFTWARE

 Hyperparameter optimization (HPO) with the Neural Network Intelligence (NNI) toolbox

Figure: Optimization in 2 steps (A) and (B), restricting the search space. Fra et al., 2022.

Figure: Application of HPO to feedforward and recurrent SNNs classifying Braille. (A) Best test accuracy results produced by the RSNN for all combinations of time_bin_size and nb_input_copies. (B) Mean and standard deviation of the FFSNN and RSNN accuracy results, with the best parameters for each encoding threshold. Müller-Cleve et al., 2022.

SYSTEM SOFTWARE: THE SPINNAKER EXAMPLE 🕑

- Neuromorphic platforms require system software to compile and execute SNN applications on the hardware
- SpiNNaker software stack: an end-to-end toolchain based on PyNN
 - Host side: Python libraries translate PyNN models into SpiNNaker applications
 - Platform side: an event-driven OS interfaces user applications with the underlying hardware
- Efficient mapping and routing is an important step in the toolchain
 - Placement and routing exploration for implementation of new features

PLACEMENT AND ROUTING EXPLORATION ON SPINNAKER P

2-layer MNIST classifier with *rate-based* multi-compartmental neurons

 Tight timing constraints lead to catastrophic packet loss

- Communication test with a single neuron: lost packets depend on target placement
- Likely due to multiplexer imbalance at the router's entrance

PLACEMENT AND ROUTING EXPLORATION ON SPINNAKER

Study and implementation of new computational paradigms exploiting neuromorphic hardware architectures

Evelina Forno 33 / 57

PLACEMENT AND ROUTING EXPLORATION ON SPINNAKER

Study and implementation of new computational paradigms exploiting neuromorphic hardware architectures

Evelina Forno 34 / 57

PLACEMENT AND ROUTING EXPLORATION ON SPINNAKER

Custom routing algorithm

Multi-board place & route

SOFTWARE FRAMEWORKS: SUMMARY

SNN specification software

- > Create simple, abstract and portable descriptions of the desired models
- Compile and deploy on simulated or physical hardware backends
- ANN methods (i.e., HPO) can also be used with SNNs to refine their architecture and improve results
- Flexible system software is an important middleman between the specification and deployment software and the neuromorphic hardware
 - SpiNNaker's system software stack can interact with PyNN libraries to implement new features and enable continuous development

HARDWARE PLATFORMS

Study and implementation of new computational paradigms exploiting neuromorphic hardware architectures Evelina Forno 37 / 57

HARDWARE PLATFORMS

Acceleration of Spiking Neural Networks

BrainScaleS

Simulates biological neurons at faster than real-time speed **Mixed analog/digital**

oihi

Neuromorphic research chip for the simulation of asynchronous SNNs **Mixed analog/digital**

Dynap-SEL

Edge computing applications for IoT and Industry 4.0 **Mixed analog/digital**

SpiNNaker

Real-time SNN simulation on ARM general-purpose processors **Fully digital**

EXPLORING THE SPINNAKER COMMUNICATION INFRASTRUCTURE WITH MPI

SpinMPI: the MPI library for SpiNNaker

 Study the interconnection scheme using distributed-memory parallel algorithms

Benchmark program for SpinMPI: MPI-PageRank

 Comparison with existing SNN implementation of PageRank on SpiNNaker

Figure: Forno et al. 2021

SPINMPI PERFORMANCE ANALYSIS III

240

220

200

180

160

140

120

SNN-PR on 15 cores

Uneven trend due to

DTCM/RAM memory

location

100

Avg. PR time

7 rings

6 rings

4 ring

3 rings
2 rings

1 ring
0 rings

110

--- Avg. PR time (BC only

140

PageBank computation time for a fixed size graph (IVI=768_IEI=7680)

Number of Cores

Minimizing write/read access to the MPI communication buffer decreases the broadcast time. Vertical lines highlight points where the number of required buffer accesses changes.

Figure: Forno et al., 2021.

Different placements of the same number of cores affect execution time.

Figure: Forno et al., 2021.

Study and implementation of new computational paradigms exploiting neuromorphic hardware architectures

BRAILLE CLASSIFICATION ON LOIHI VS. GPU 🕕

Accuracy: RSNN + Loihi underperforms by 17% compared to the best-performing non-spiking classifier (LSTM + GPU)

- Comparable results to RSNN and eLSTM on GPU
- Energy-delay product for LSTM + GPU is 1475× greater than RSNN + Loihi

HARDWARE PLATFORMS: SUMMARY III

- SpiNNaker and Loihi as representatives of the 1st generation of neuromorphic hardware
- SpinMPI + massively parallel non-spiking algorithm reveals bottlenecks in the SpiNNaker communication architecture
 - Complex interactions limit scalability
- RSNN operating on Loihi offers a significant energy/accuracy tradeoff
 - Accuracy underperforms by 17% compared to LSTM on GPU
 - ▶ ... But 3-orders-of-magnitude gains in energy efficiency

BRINGING IT ALL TOGETHER: **TOWARDS A** COMPLETE NEUROMORPHIC PIPELINE

BRINGING IT ALL TOGETHER: TOWARDS A COMPLETE NEUROMORPHIC PIPELINE A

- Existing neuromorphic systems cannot be stationed as standalone edge devices
 - Separate host uploads the network setup and input data
- Some neuromorphic designs incorporate von Neumann-based coprocessors
 - NeuroEdge: NM500 neuromorphic processor in a Raspberry Pi
 - Loihi: microcontroller-class x86 chips at the mesh's periphery perform data encoding/decoding
- Issues in interfacing neuromorphic sensors, encoders, models, software tools and hardware with each other and with traditional computing frameworks

CONFIGURING AN EMBEDDED NEUROMORPHIC COPROCESSOR WITH RISC-V

- ODIN: a Spiking Neural Network coprocessor
- Integration with a low-power RISC-V microprocessor (Rocket Chip) via SPI
 - Chipyard framework for SoC
 - ODIN as a Memory-Mapped I/O (MMIO) peripheral
- Whole system synthesized for PYNQ Z2 board

Figure: Forno et al., 2021.

RISC-V coprocessor to set up the SPI controller, initialize ODIN, and gather results through its AER output interface

FROM SENSOR TO NEURON A

A neuromorphic approach for on-edge HAR applications

- WISDM smartphone and wristwatch activity and biometrics dataset
- Raw data-only classification
- Nengo as basic framework

Preliminary processes: (a) Dataset selection (c) HPO search space specification (d) HPO experiment configuration Main pipeline: (b) Neural network architecture selection (e) Hyperparameter optimization (f) Classification

Evelina Forno 46

FROM SENSOR TO NEURON A

A time-varying signal benchmark for spike encoding techniques

Pipeline expanded to support:

- Encoding and preprocessing filters
- ▶ Transfer learning (CNN \rightarrow sCNN)
- Model compression stage
- Validation of encoding methods by applying the same pipeline to two distinct datasets (FSD and WISDM)

Figure: Forno et al., 2022.

FROM SENSOR TO NEURON A

Braille letter reading benchmark on neuromorphic hardware

Figure: Müller-Cleve et al., 2022.

Time series classification on neuromorphic hardware

- Spike coding
- Asynchronous event-driven computation
- Performance analysis: multiple metrics and hardware solutions
- The resulting pipeline can be applied to a wide range of time-dependent data

NEUROMORPHIC PIPELINE: SUMMARY A

- Workable prototypes for benchmarking neuromorphic system designs
- Complete end-to-end neuromorphic pipelines ready for deployment in IoT and industrial applications are not yet easily realizable
 - Scarce availability of event-based sensors
 - Lack of resources for native SNN training
 - Gradual adoption of new tools, techniques and models
- The developed method creates a valuable and stable platform to support future work

- Neuromorphic pipeline with special attention to applications involving the categorization of IoT time-varying data
 - An ideal use case for SNNs (accurate internal representation of spatio-temporal dynamics)
- An embedded neuromorphic application must interact with its environment via sensors
 - ▶ Event-based sensors for specialized tasks bring extreme power efficiency
 - ▶ **Digital sensors**: more accessible, low cost ⇒ likely to remain relevant in neuromorphic application for the foreseeable future

- Issue of spike encoding and its repercussions on downstream elements
- A sufficiently high spike count is required to properly stimulate all the cascading layers of the classification network
 - > Tradeoff between information preservation and energy reduction
- Rate-based coding does not properly represent the fine temporal dynamics of an input signal
- Temporal coding more fitting for SNNs
 - Temporal contrast techniques strike the best balance between accuracy and ease of implementation

- Among classifier architectures, spiking CNNs offer ease of implementation and transfer learning
- Comparative classification of the Braille dataset shows the most suitable architecture for time-varying data in the spiking domain is the recurrent neural network
 - Memory trace of past events in recurrently connected reservoirs
 - Correlate time-varying events on a longer scale
- Optimization techniques remain important in addition to architectural design

- Neuromorphic hardware prepares to enter its 2nd generation
 - Communication bottlenecks identified in the SpiNNaker architecture should improve with the latest hardware iteration
- We have showed that communication efficiency also heavily depends on the placement and routing algorithms
 - Need to account for the relative physical location of data and computing elements
 - ▶ Fully programmable systems like SpiNNaker enable continual evolution
- Finally, we demonstrated interoperability of neuromorphic and general-purpose processors and gradually built a neuromorphic pipeline for classification of time-varying signals

For many years, neuromorphic technology has suffered from a lack of accessibility

- Scarcity of standard APIs to ensure HW/SW interoperability
- No unified front-end to combine different solutions
- Community efforts have brought new tools to explore novel neural architectures and applications with increased modularity
 - Neural Engineering Framework (NEF) and Nengo
 - Intel Neuromorphic Research Community
- This dissertation represents a first step toward effortless integration of neuromorphic devices into fully embedded applications

The use cases offered here offer a foundation for future research to build upon and expand the possibilities of neuromorphic engineering.

SOURCES

- Vittorio Fra, Evelina Forno, Riccardo Pignari, Terrence C. Stewart, Enrico Macii, and Gianvito Urgese. Human activity recognition: suitability of a neuromorphic approach for on-edge AIOT applications. Neuromorphic Computing and Engineering, 2(1):014006, 2022. This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
- Evelina Forno, Vittorio Fra, Riccardo Pignari, Enrico Macii, and Gianvito Urgese. Spike encoding techniques for IoT time-varying signals benchmarked on a neuromorphic classification task. Frontiers in Neuroscience, 16, 2022. This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
- Simon F. Müller-Cleve, Vittorio Fra, Lyes Khacef, Alejandro Pequeño-Zurro, Daniel Klepatsch, Evelina Forno, Diego G. Ivanovich, Shavika Rastogi, Gianvito Urgese, Friedemann Zenke, and Chiara Bartolozzi. Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic hardware. Frontiers in Neuroscience, 16, 2022. This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
- Evelina Forno, Alessandro Salvato, Enrico Macii, and Gianvito Urgese. Pagerank implemented with the MPI paradigm running on a many-core neuromorphic platform. Journal of Low Power Electronics and Applications, 11(2):25, 2021. This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
- Evelina Forno, Andrea Spitale, Enrico Macii, and Gianvito Urgese. Configuring an embedded neuromorphic coprocessor using a RISC-V chip for enabling edge computing applications. In 2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), pages 328–332. IEEE, 2021. © 2021 IEEE.
- Slide 17: LIF model illustration by *Spiking16* on Wikimedia Commons

THANK YOU FOR YOUR ATTENTION

Study and implementation of new computational paradigms exploiting neuromorphic hardware architectures

SUMMARY OF CONTRIBUTIONS

Article	Title	Contribution
Fra et al., 2022	Human activity recognition: suitability of a neuromorphic approach for on-edge AloT applications	Network definition, hyperparameter optimization, article writing
Forno et al., 2022	Spike encoding techniques for IoT time-varying signals benchmarked on a neuromorphic classification task	Designed the analysis and wrote the manuscript
Muller-Cleve et al., 2022	Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic hardware	Performed NNI implementation and wrote the manuscript
Forno et al., 2021	Pagerank implemented with the MPI paradigm running on a many-core neuromorphic platform	Conceptualization, methodology, software, validation, visualization, writing
Forno et al., 2021	Configuring an embedded neuromorphic coprocessor using a RISC-V chip for enabling edge computing applications	Supervision and article writing