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INTRODUCTION

■ The rise of embedded devices, the Internet of Things (IoT), and edge
computing has transformed the way we interact with technology

■ Machine learning (ML) techniques in IoT and edge computing to optimize
performance, reduce latency, and improve accuracy

■ Deploying ML models directly on the remote endpoint provides advantages
Ï Real-time inference for lower latency in time-critical applications
Ï Data retention on device increases reliability & privacy

■ Artificial Neural Networks (ANNs): a flourishing area of ML
Ï Too memory- and power-hungry to run on edge systems
Ï End of Moore’s law leads to exploration of novel platforms
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INTRODUCTION

■ Neuromorphic systems: design innovations inspired by neuroscience and
biology

Ï Computational model: Spiking Neural Network (SNN)
Ï Biologically-inspired
Ï Sparse internal activity

Ï Event-driven architecture⇒ low power consumption
Ï Custom routing for effective data interchange

■ Neuromorphic systemsmeet edge computing requirements
Ï Low power consumption + localized memory + real-time response
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SPIKING NEURAL NETWORKS

■ Information in the form of spikes (aka action potentials)
■ Computational capabilities comparable to equivalent ANNs while

consuming less power
Ï A good choice for embedded applications

■ Biologically-inspired learning algorithms support online learning

■ Well suited for processing temporal information
■ Need substantial data transfer between computational and memory units

Ï Von Neumann architectures are not suitable
Ï Neuromorphic processors: colocation of memory and computation
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THE BUILDING BLOCKS OF A NEUROMORPHIC
PIPELINE

■ This dissertation’s goals:
Ï describe a general approach to the generation of neuromorphic models
Ï facilitate the modeling process and the exploration of new neuromorphic

computational paradigms
Ï implement data analysis and integration in the industrial field

■ Need to examine all elements of the neuromorphic pipeline
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THE BUILDING BLOCKS OF A NEUROMORPHIC
PIPELINE

■ The structure of the thesis follows
the flow of data in a neuromorphic
pipeline

■ Each section an overview of a layer
of the pipeline stack

■ Main task: classification of
time-varying signals
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EVENT-DRIVEN
AND STANDARD
SENSORS
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EVENT-DRIVEN AND STANDARD SENSORS S

■ Input data acquisition from IoT sensors
■ Neuromorphic platforms implemented close to the sensors can perform

NN-based tasks locally
Ï Limit dependency on cloud computing
Ï Respect power constraints
Ï Maintain data integrity and privacy

■ Event-based encoding significantly reduces the size of sensor data
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EVENT-DRIVEN AND STANDARD SENSORS S

Standard digital sensors

■ Output floating-point or integer
samples at each time instant

■ Signal needs to be encoded into
spikes in order to be processed by a
Spiking Neural Network

Event-based sensors

■ Output spike trains, remain silent
when no input is present

■ The spike encoding is performed
within the sensor and the input can
be fed directly to an SNN
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DIGITAL SENSORS AND DATASETS S

■ Two target datasets:
Ï Free Spoken Digit (FSD) Dataset

(audio signals)
Ï WISDM Smartphone and
Smartwatch Activity and
Biometrics Dataset (wearable
IMU data)

■ Both time-varying signals; distinct
regions in the frequency spectrum Figure: Forno et al., 2022

WISDM→ very low frequency
FSD→middle frequency
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DIGITAL SENSORS AND DATASETS S

The WISDM dataset

■ Smartphone + smartwatch IMU sensors for collecting
datasets of human activity

■ Signal segmentation affects accuracy and classification
time

0 2 4 6 8 10
10

5

0

5

10

15

20

m
/s

2

Accelerometer x-axis

0 2 4 6 8 10
20

10

0

10

20

ra
d/
s

Gyroscope x-axis

0 2 4 6 8 10
20

10

0

10

20

m
/s

2

Accelerometer y-axis

0 2 4 6 8 10

10

5

0

5

10

ra
d/
s

Gyroscope y-axis

0 2 4 6 8 10
time (s)

10

5

0

m
/s

2

Accelerometer z-axis

0 2 4 6 8 10
time (s)

7.5

5.0

2.5

0.0

2.5

5.0

ra
d/
s

Gyroscope z-axis

dribbling catch typing writing clapping teeth folding
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hand-oriented subset. Fra et al., 2022.

KDE of smartwatch values on the 6 IMU sensor
axes. Fra et al., 2022.

The FSD dataset

■ Crowd-sourced open
database of spoken
digits (variable
quality

■ .wav files at 8 kHz

■ Word classification
challenges

■ Optional metadata
for speaker
identification
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EVENT-BASED TACTILE SENSING S

Figure: (A) Diagram of the sensorized fingertip. (B)
Experiment configuration with a braille sample. (C)
Random distribution for the starting location.
Müller-Cleve et al., 2022.

The Braille dataset

■ A novel dataset of haptic information based on
the braille alphabet, recorded at IIT

■ Digital capacitive sensor output encoded as
spikes

■ Sensorized fingertip (12 capacitive sensors)
moving over 3D-printed braille letters (A-Z +
space) with a constant sliding distance and
velocity

■ Starting location with random Gaussian noise
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SENSORS: SUMMARY S

■ SNN-based solutions require a sensing input in the form of spikes

■ Event-based sensors, while promising, are still under active development

■ Digital sensors are more accessible because of low cost and market
dominance

■ Interfacing a neuromorphic computational pipeline with digital inputs
requires proper encoding
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INPUT ENCODING
AND
PRE-PROCESSING
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INPUT ENCODING AND PRE-PROCESSING E

■ Many encoding schemes derived from the animal neuron
Ï Rate-based coding
Ï Temporal coding

■ We will examine the effects of various spike encoding methods on the
performance of a spiking CNN

Ï Training by transfer learning
Ï Classifying time-varying input signals fromWISDM and FSD

■ Signal preprocessing inspired by the human auditory system
Ï Frequency decomposition
Ï Feature extraction
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SIGNAL PRE-PROCESSING E

Frequency decomposition

FSD WISDM
Butterworth 77.50% 66.67%
Gammatone 84.00% 46.67%

Table: FSD: 32 and 64 channels. WISDM: 4, 8, and 16 channels.

Figure: Architecture of the convolutional neural network.
All figures: Forno et al., 2022.

Feature extraction

■ Sonogram→ number of bins
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ENCODING TECHNIQUES E

Figure: Forno et al., 2022.

Accuracy comparison

Figure: Median accuracy values of each encoding class. Forno et al., 2022.

Spike count

■ Deconvolution-based → highest SC

■ τref > 0 degrades performance
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SUMMARY OF ENCODING STRATEGIES E

Encoding class and technique
Temporal data

Spatial data1Very low f Middle f

Rate coding Poisson Rate 7 3 3

Temporal Coding

Temporal Contrast

TBR 3 3 7

SF 3 3 7

MW 3 3 7

ZCSF 3 3 7

Deconvolution-based
HSA − − 7

MHSA − − 7

BSA 3 − 7

Global Referenced
PHASE 7 3 3

TTFS 7 3 3

Latency/ISI BURST 7 3 3
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EVENT-BASED ENCODING OF TACTILE DATA E

■ Sigma-delta modulator

Figure: (A) Sensor reading sequence for a sample letter + sigma-delta
modulated spikes. (B) Reconstructed sequences from events compared
to the original signal. Müller-Cleve et al., 2022.

Signal reconstruction before time binning

■ Higher threshold⇒ fewer spikes⇒
worse reconstruction error

■ The compression ratio γ grows faster
than the reconstruction error ϵ

Signal reconstruction after time binning

■ Higher threshold⇒worse
reconstruction error
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INPUT ENCODING AND PRE-PROCESSING:
SUMMARY E

■ The frequency bandwidth of the input data has an impact on the quality of
the encoding

■ The spike count generated by an encoding technique influences the
performance of the downstream SNN

Ï Lower bound to communication sparsity

■ Digital sensors coupled with software encoders can be useful for
prototyping different coding techniques and tuning their interactions with
other elements
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NEURAL MODELS
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NEURAL MODELS M

Leaky Integrate and Fire (LIF)

■ Optional refractory period τref

■ Reduces to the (m)ReLU activation function

■ Variants such as ALIF add synaptic plasticity

Multi-compartmental neurons

■ Model the behavior of
dendrites and cell body
separately

■ Neuroscience simulations

■ Urbanczik-Senn model: 2
compartments + 2 synapse
types

■ Pyramidal model: 3
compartments + 3 synapse
types
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LEARNING METHODS M

■ Research still in progress for a reliable SNN learning algorithm
Ï Global methods: Spike-Time-Dependent Plasticity, Back-Propagation Through

Time
Ï Local methods: Hebbian learning, E-prop

■ ANN-to-SNN conversion provides an alternative method: Transfer learning
Ï Training an ANN, then transfer the resulting weights to an SNN with the same

topology
Ï Maintain the ANN functionality while lowering power consumption thanks to

spike transmission
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SPIKING NEURAL NETWORK ARCHITECTURES M

■ Spiking CNN

Ï ANN-to-SNN conversion

■ Recurrent SNNs

Ï Legendre Memory Unit (LMU)

Comparison of equivalent spiking and non-
spiking neural networks for HAR

■ Accuracy; number of parameters;
energy consumption Figure: A comparison of convolutional and recurrent SNNs for Human

Activity Recognition. Fra et al., 2022.
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SPIKING NEURAL NETWORK ARCHITECTURES M
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Figure: Fra et al., 2022.

■ Energy estimated for Intel Movidius
(for ANNs) and Intel Loihi (for SNNs)

■ SNNs & LMUs use at least one order of
magnitude less energy than ANNs

■ CNNs and LSTMs are the largest in
terms of memory / number of
parameters

The Spiking LMU displays the best
accuracy/energy/memory trade-off in this

examination
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MODEL COMPRESSION M

■ Reduce the size of the network prior to
deployment

■ Model compressionwith 2 phases:

Ï Synapse reduction: delete
connections with smallest
weights

Ï Fine-tuning: briefly re-train the
remaining connections

Spiking CNN trained by transfer learning
for FSD and WISDM classification Figure: Median test accuracy after synapse reduction (A, C) and

fine-tuning (B, D) for classification of the FSD and WISDM datasets. Forno
et al., 2022.
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NEURAL MODELS: SUMMARY M

■ The dynamics of a network can be modeled down to single neurons
■ This flexibility must be tailored to the target application

Ï For most computation purposes, a simple LIF is sufficient

■ The choice of the classifier network determines the efficiency and accuracy
of the system

Ï ANN-to-SNN conversion (i.e. sCNN): ease of implementation and training
(transfer learning)

Ï Recurrent SNNs (i.e. LMU): correlate time-varying events on a longer scale

■ Model choices are informed by available software and hardware
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SOFTWARE
FRAMEWORKS
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SOFTWARE FRAMEWORKS P

■ Neuromorphic applications need a powerful software stack to enable
research and development

■ SNN specification softwaremust handle the simulation complexity of
SNNs and ease the difficulties in designing them. Some examples:

PyNN

Python front-end for most
neuromorphic simulators
and hardware
Widespread adoption by the
research community

Nengo

All-in-one simulator based
on the Neural Engineering
Framework
NengoDL converter (DNN→
event-based)

EONS

Evolutionary approach to
network design
Supports mapping to
neuromorphic hardware
platforms
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SNN OPTIMIZATION SOFTWARE P

■ Hyperparameter optimization (HPO) with the Neural Network Intelligence
(NNI) toolbox

Figure: Optimization in 2 steps (A) and (B), restricting the search space.
Fra et al., 2022.

Figure: Application of HPO to feedforward and recurrent SNNs
classifying Braille. (A) Best test accuracy results produced by the RSNN
for all combinations of time_bin_size and nb_input_copies. (B)Mean and
standard deviation of the FFSNN and RSNN accuracy results, with the
best parameters for each encoding threshold. Müller-Cleve et al., 2022.
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SYSTEM SOFTWARE: THE SPINNAKER EXAMPLE P

■ Neuromorphic platforms require system software to
compile and execute SNN applications on the hardware

■ SpiNNaker software stack: an end-to-end toolchain
based on PyNN

Ï Host side: Python libraries translate PyNN models into
SpiNNaker applications

Ï Platform side: an event-driven OS interfaces user
applications with the underlying hardware

■ Efficient mapping and routing is an important step in
the toolchain

Ï Placement and routing exploration for implementation
of new features
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PLACEMENT AND ROUTING EXPLORATION ON
SPINNAKER P

2-layer MNIST classifier with rate-based
multi-compartmental neurons

■ Tight timing constraints lead to
catastrophic packet loss

■ Communication test with a single neuron: lost
packets depend on target placement

■ Likely due to multiplexer imbalance at the
router’s entrance
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PLACEMENT AND ROUTING EXPLORATION ON
SPINNAKER P

Custom placement
algorithm

Default placement

1105 packets lost
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PLACEMENT AND ROUTING EXPLORATION ON
SPINNAKER P

Custom placement
algorithm

Custom placement

0 packets lost
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PLACEMENT AND ROUTING EXPLORATION ON
SPINNAKER P

Custom routing algorithm Multi-board place & route
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SOFTWARE FRAMEWORKS: SUMMARY

■ SNN specification software
Ï Create simple, abstract and portable descriptions of the desired models
Ï Compile and deploy on simulated or physical hardware backends

■ ANNmethods (i.e., HPO) can also be used with SNNs to refine their
architecture and improve results

■ Flexible system software is an important middleman between the
specification and deployment software and the neuromorphic hardware

Ï SpiNNaker’s system software stack can interact with PyNN libraries to
implement new features and enable continuous development
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HARDWARE
PLATFORMS
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HARDWARE PLATFORMS H

■ Acceleration of Spiking Neural Networks

BrainScaleS

Simulates biological neurons at faster
than real-time speed
Mixed analog/digital

Dynap-SEL

Edge computing applications for IoT
and Industry 4.0
Mixed analog/digital

Loihi

Neuromorphic research chip for the
simulation of asynchronous SNNs
Mixed analog/digital

SpiNNaker

Real-time SNN simulation on ARM
general-purpose processors
Fully digital
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EXPLORING THE SPINNAKER COMMUNICATION
INFRASTRUCTURE WITH MPI H

Figure: Forno et al., 2021.

■ SpinMPI: the MPI library for SpiNNaker
Ï Study the interconnection scheme using

distributed-memory parallel algorithms

■ Benchmark program for SpinMPI:
MPI-PageRank

■ Comparison with existing SNN
implementation of PageRank on SpiNNaker
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SPINMPI PERFORMANCE ANALYSIS H

Figure: Forno et al., 2021.

■ MPI-PR scales around
1.75× faster than
SNN-PR on 15 cores

■ Uneven trend due to
DTCM/RAMmemory
location

Minimizing write/read access to
the MPI communication buffer
decreases the broadcast time.
Vertical lines highlight points
where the number of required
buffer accesses changes.

Figure: Forno et al., 2021.

Different placements of the
same number of cores affect
execution time.

Figure: Forno et al., 2021.
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BRAILLE CLASSIFICATION ON LOIHI VS. GPU H

■ Accuracy: RSNN + Loihi underperforms by 17% compared to the
best-performing non-spiking classifier (LSTM + GPU)

Ï Comparable results to RSNN and eLSTM on GPU

■ Energy-delay product for LSTM + GPU is 1475× greater than RSNN + Loihi
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HARDWARE PLATFORMS: SUMMARY H

■ SpiNNaker and Loihi as representatives of the 1st generation of
neuromorphic hardware

■ SpinMPI + massively parallel non-spiking algorithm reveals bottlenecks in
the SpiNNaker communication architecture

Ï Complex interactions limit scalability

■ RSNN operating on Loihi offers a significant energy/accuracy tradeoff
Ï Accuracy underperforms by 17% compared to LSTM on GPU
Ï ... But 3-orders-of-magnitude gains in energy efficiency
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BRINGING IT ALL
TOGETHER:
TOWARDS A
COMPLETE
NEUROMORPHIC
PIPELINE
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BRINGING IT ALL TOGETHER: TOWARDS A
COMPLETE NEUROMORPHIC PIPELINE A

■ Existing neuromorphic systems cannot be stationed as standalone edge
devices

Ï Separate host uploads the network setup and input data

■ Some neuromorphic designs incorporate von Neumann-based coprocessors
Ï NeuroEdge: NM500 neuromorphic processor in a Raspberry Pi
Ï Loihi: microcontroller-class x86 chips at the mesh’s periphery perform data

encoding/decoding

■ Issues in interfacing neuromorphic sensors, encoders, models, software
tools and hardware with each other and with traditional computing
frameworks
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CONFIGURING AN EMBEDDED NEUROMORPHIC
COPROCESSORWITH RISC-V A

■ ODIN: a Spiking Neural Network
coprocessor

■ Integration with a low-power
RISC-V microprocessor (Rocket
Chip) via SPI

Ï Chipyard framework for SoC
Ï ODIN as a Memory-Mapped I/O

(MMIO) peripheral

■ Whole system synthesized for
PYNQ Z2 board

Figure: Forno et al., 2021.

RISC-V coprocessor to set up the SPI
controller, initialize ODIN, and gather

results through its AER output interface
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FROM SENSOR TO NEURON A

A neuromorphic approach for on-edge HAR applications

Figure: Fra et al., 2022.

■ WISDM smartphone and wristwatch activity
and biometrics dataset

■ Raw data-only classification

■ Nengo as basic framework

Preliminary processes:
(a) Dataset selection
(c) HPO search space
specification
(d) HPO experiment
configuration

Main pipeline:
(b) Neural network
architecture selection
(e) Hyperparameter
optimization
(f) Classification
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FROM SENSOR TO NEURON A

A time-varying signal benchmark for spike encoding techniques

■ Pipeline expanded to support:
Ï Encoding and preprocessing filters
Ï Transfer learning (CNN→ sCNN)
Ï Model compression stage

■ Validation of encoding methods by
applying the same pipeline to two
distinct datasets (FSD and WISDM)

Figure: Forno et al., 2022.
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FROM SENSOR TO NEURON A

Braille letter reading benchmark on neuromorphic hardware

Figure: Müller-Cleve et al., 2022.

■ Time series classification on
neuromorphic hardware

Ï Spike coding
Ï Asynchronous event-driven

computation

■ Performance analysis: multiple
metrics and hardware solutions

■ The resulting pipeline can be
applied to a wide range of
time-dependent data
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NEUROMORPHIC PIPELINE: SUMMARY A

■ Workable prototypes for benchmarking neuromorphic system designs
■ Complete end-to-end neuromorphic pipelines ready for deployment in IoT

and industrial applications are not yet easily realizable
Ï Scarce availability of event-based sensors
Ï Lack of resources for native SNN training
Ï Gradual adoption of new tools, techniques and models

■ The developed method creates a valuable and stable platform to support
future work
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CONCLUSIONS

■ Neuromorphic pipeline with special attention to applications involving the
categorization of IoT time-varying data

Ï An ideal use case for SNNs (accurate internal representation of
spatio-temporal dynamics)

■ An embedded neuromorphic application must interact with its environment
via sensors

Ï Event-based sensors for specialized tasks bring extreme power efficiency
Ï Digital sensors: more accessible, low cost⇒ likely to remain relevant in

neuromorphic application for the foreseeable future
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CONCLUSIONS

■ Issue of spike encoding and its repercussions on downstream elements
■ A sufficiently high spike count is required to properly stimulate all the

cascading layers of the classification network
Ï Tradeoff between information preservation and energy reduction

■ Rate-based coding does not properly represent the fine temporal
dynamics of an input signal

■ Temporal codingmore fitting for SNNs
Ï Temporal contrast techniques strike the best balance between accuracy and

ease of implementation
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CONCLUSIONS

■ Among classifier architectures, spiking CNNs offer ease of implementation
and transfer learning

■ Comparative classification of the Braille dataset shows the most suitable
architecture for time-varying data in the spiking domain is the recurrent
neural network

Ï Memory trace of past events in recurrently connected reservoirs
Ï Correlate time-varying events on a longer scale

■ Optimization techniques remain important in addition to architectural
design

Study and implementation of new computational paradigms exploiting neuromorphic hardware architectures Evelina Forno 52 / 57



CONCLUSIONS

■ Neuromorphic hardware prepares to enter its 2nd generation
Ï Communication bottlenecks identified in the SpiNNaker architecture should

improve with the latest hardware iteration

■ We have showed that communication efficiency also heavily depends on the
placement and routing algorithms

Ï Need to account for the relative physical location of data and computing
elements

Ï Fully programmable systems like SpiNNaker enable continual evolution

■ Finally, we demonstrated interoperability of neuromorphic and
general-purpose processors and gradually built a neuromorphic pipeline
for classification of time-varying signals
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CONCLUSIONS

■ For many years, neuromorphic technology has suffered from a lack of
accessibility

Ï Scarcity of standard APIs to ensure HW/SW interoperability
Ï No unified front-end to combine different solutions

■ Community efforts have brought new tools to explore novel neural
architectures and applications with increased modularity

Ï Neural Engineering Framework (NEF) and Nengo
Ï Intel Neuromorphic Research Community

■ This dissertation represents a first step toward effortless integration of
neuromorphic devices into fully embedded applications

The use cases offered here offer a foundation for future research to build upon
and expand the possibilities of neuromorphic engineering.
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